Projected Changes in Land-Atmosphere Interactions from CMIP5 Simulations

Paul Dirmeyer

Yan Jin, Bohar Singh and Xiaoqin Yan

Climate Dynamics Program
George Mason University
Fairfax, Virginia

Result of a class term project in CLIM714: Land-Climate Interactions at GMU

CMIP5 Quandary

- When looking at results from many models, one usually finds one or more that are outliers or exhibit *peculiar* behavior, typically for a few but not all variables.
- Including the outliers in a multi-model mean skews results.
- There is no objective way to screen out "oddballs" that is not arbitrary.
- There is insufficient data (and for climate projects, no validation data) to construct unequal weights for various models.

One Model – One Vote

- Our solution is to treat the projected change in any variable at each point by each model as a binary result (+ or -) without regard to magnitude.
- Null hypothesis: equal odds for either outcome.
- This prevents an outlier, no matter how extreme, from having any more influence than any other model on the multi-model result.
- It also greatly simplifies the estimation of statistical significance...

15 Models Are Like 15 Coins...

Count:	0, 15	1, 14	2, 13	3, 12	4, 11	5, 10	6, 9	7,8
Local Significance								
Probability	0.00003	0.00046	0.0032	0.0139	0.0417	0.0916	0.153	0.196
Cumulative Probability	0.00003	0.00049	0.0037	0.0175	0.0592	0.151	0.304	0.500
Global (Field) Signij	ficance							
Exceedance of expected value (99% confidence)	153x	17.7x	5.03x	2.55x	1.75x	1.42x	1.26x	1.17x
%Area of globe (99% confidence)	0.46%	0.87%	1.86%	4.47%	10.3%	21.5%	38.4%	58.5%
5 ≥14 ≥13 ≥ ²	12 ≥11	≥10	7.5	≥10) ≥11	≥12	≥13	≥14
Decrease				Increase				

- The likelihood of n models agreeing at any point is analogous to n coin tosses agreeing.
- With an estimate of spatial DOFs, we can say if the area covered by a certain level of agreement is significant.

Models Used

- 95y monthly data from pre-industrial, historical and RCP8.5.
- Selection based on availability of required variables in COLA's CMIP5 archive.
- Only first ensemble member used.
- More than one version of some models.

Center	Model Version	Resolution
Canadian Centre for Climate Modelling	CanESM2	128 x 64
and Analysis		
Centre National de Recherches	CNRM-CM5	256 x 128
Météorologiques / Centre Européen de		
Recherche et de Formation Avancée en		
Calcul Scientifique		
Commonwealth Scientific and Industrial	ACCESS1-0	192 x 145
Research Organisation -Bureau of		
Meteorology		
Institute for Numerical Mathematics	INM-CM4	180 x 120
Institut Pierre-Simon Laplace	IPSL-CM5A-LR	96 x 96
	IPSL-CM5A-MR	144 x 143
University of Tokyo Division of Climate	MIROC-ESM	128 x 64
System Research		
	MIROC-ESM-CHEM	128 x 64
	MIROC5	256 x 128
Met Office Hadley Centre	HadGEM2-CC	192 x 145
	HadGEM2-ES	192 x 145
Meteorological Research Institute, Japan	MRI-CGCM3	320 x 160
Meteorological Agency		
NASA-Goddard Inistitue for Space Studies	GISS-E2-R	144 x 90
Norwegian Climate Centre	NorESM1-M	144 x 96
NOAA-Geophysical Fluid Dynamics	GFDL-ESM2M	144 x 90
Laboratory		

Land State

- Model consensus: 19th→20th century predominantly drying except central Asia.
- Future: severe drying globally in JJA; wetter at high latitudes and E. Africa in DJF.

Soil Moisture in Top 10cm

Present [historical] minus Past [preIndustrial]

Future [RCP8.5] minus Present [historical]

Variability

- Past: consensus that variability has increased.
- Future: more
 variability in many
 areas, but
 reduced in arid
 regions, dry
 seasons, and in
 winter at high
 latitudes.

Interannual σ Soil Moisture

Present [historical] minus Past [preIndustrial]

Future [RCP8.5] minus Present [historical]

L-A Coupling

$$I(w_m, \lambda E_m) = \lambda \frac{\sum (w'_{m,y} E'_{m,y})}{\sqrt{\sum (w'_{m,y})^2}}$$

- Corresponds strongly to "hot spots".
- Global changes not field-significant pastto-present.
- Future: large areas of increased soil moisture control of surface fluxes.

Dirmeyer, 2011: Geophys. Res. Lett., 38, L16702, doi: 10.1029/2011GL048268.

Evolution

 Present: strong L-A coupling expands north from Mexico to Canada from spring to summer, mainly across Great Plains and Southwest.

- Two aspects to future changes:
 - Earlier onset (left; most increase along northern margin)
 - Broader extent (right; core areas change little, but consensus increase on east, north, west sides of "hot spot".

BL Depth (LCL)

- Past: decrease where industrial aerosols are (especially winter, spring), otherwise increase.
- Future: Consensus for deepening BL almost everywhere, as atmosphere warms, dew point depression increases.

Priestley-Taylor Coefficient

$$\alpha = \left(\frac{\lambda E}{H + \lambda E}\right) \left(\frac{1 + \varepsilon}{\varepsilon}\right), \quad \varepsilon = \frac{\lambda}{C_P} \frac{dq}{dT}\Big|_{T_{LCL}}$$

 Decreasing α suggests entrainment at the top of the PBL has a reduced impact on boundary layer properties relative to surface fluxes.

Betts, 2004: *Bull. Amer. Meteor. Soc.*, **85**, 1673-1688, doi: 10.1175/BAMS-85-11-1673.

Synthesis: Spring

- Past: Arctic, subtropical responses consistent with initial global warming in GCMs
 - Aerosol impacts also evident.
 - Only discernable land use change signal is here over central U.S.
- Future: series of N-S dipoles in water cycle (SM, precip, evaporation)
 - Increase in L-A coupling coincideswith ↓precip + ↑evap.

Summer:

- Simpler patterns.
- Past→present: aerosol and warming signals drive changes.
- Future: subtropical water cycle characteristics intensify, push poleward; more extremes and variability.

Outlook based on CMIP5 models

- Soil moisture increases in winter at high latitudes, drier in warm season / dry seasons (monsoon areas).
- Increase in extent, duration of soil moisture controls on surface fluxes (land-atmosphere coupling).
- Increase in land surface impact on PBL humidity & temperature, both in absolute terms and relative to entrainment from free atmosphere.
- Details of RCPs will have some effect on conclusions.

Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2012a: *J. Hydrometeor.*, (in revision). Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2012b: *J. Climate*, (in revision).

Thank you!

